Transformada de Legendre

A transformada de Legendre consiste em uma transformação matemática que, quando aplicada sobre uma função sabidamente diferenciável em relação às suas variáveis independentes , fornece como resultado uma nova equação na qual as derivadas parciais associadas, e não as variáveis em si, figuram como variáveis independentes. A nova equação consiste na "mesma" equação inicial, mas agora "em uma forma reescrita", . A Transformada de Legendre realiza-se sempre de forma que nunca se perca qualquer informação presente na equação original, devendo as mesmas informações estarem sempre contidas na nova equação.[1]

A Transformada de Legendre e a Termodinâmica

A Transformada de Legendre encontra enorme aplicação em uma área da Física conhecida por Termodinâmica, área que tem por objetivo o estudo dos sistemas constituídos por "infinitos" entes físicos, moléculas em uma amostra confinada de gás, a exemplo.

Equação fundamental e Equação de estado

Em termodinâmica, cada sistema em estudo é descrito por uma equação matemática conhecida por equação fundamental, uma equação que retém em si todas as informações físicas associadas a este sistema. O conceito de equação fundamental reside no fato de, uma vez estabelecida a fronteira do sistema - o seu volume -, o número de entes que o compõem - o seu conteúdo material -, e a energia interna do sistema - o seu conteúdo em energia -, as condições deste sistema no equilíbrio termodinâmico encontram-se por estas grandezas (e algumas outras em sistemas mais complexos, como os magnéticos) então completamente determinadas, sendo obviamente calculáveis a partir das mesmas.

As informações físicas, quando necessárias, podem ser extraídas da equação fundamental empregando-se um formalismo matemático inerente ao estudo da termodinâmica. A exemplo, para sistemas simples, no formalismo da entropia, a equação fundamental para a entropia S em um gás ideal será dependente das grandezas volume (V), número de partículas (e não de moles) N, e da Energia Interna U: . No formalismo da energia, isolando-se a energia interna U em tem-se facilmente , também uma equação fundamental. Qualquer informação física, incluindo-se as equações de estado, a exemplo a equação de Clapeyron e a equação da energia (n= 3; 5; ... ) para o caso dos gases ideais, pode ser facilmente extraídas da equação fundamental.

Repare que as duas equações anteriores, a de Clapeyron e a da energia , em função das grandezas tomadas como independentes, são equações de estado e não equações fundamentais do sistema, e portanto não retém em si, quando isoladas, todas as informações necessárias à determinação de todas as propriedades físicas do sistema. Caso conheçam-se as equações de estado de um sistema pode-se obter uma, e em consequência - mediante transformadas de Legendre - todas as equações fundamentais do sistema, mas para isto é necessário que conheçam-se de antemão todas as equações de estado do sistema, sem ausência de nenhuma delas. A título de curiosidade a equação fundamental para um sistema composto por N partículas de um gás ideal confinados em um volume V e com energia interna U é, na representação entrópica, com representando a constante de Boltzman e c uma constante, e a menos de constante(s) acompanhando a grandeza N com unidade(s) definida(s) de forma a tornar correta a análise dimensional, não explicitamente indicadas aqui [2]:

[3]

Isolando-se U, tem-se, na representação da energia:

Verifica-se experimentalmente, entretanto, que as grandezas intensivas como a pressão , temperatura , e potencial químico ( onde , e no formalismo termodinâmico da energia) são muito mais acessíveis por medidas experimentais do que as grandezas extensivas como o volume V, entropia S e número de partículas N. Seria portanto extremamente conveniente, em acordo com a situação, principalmente em situações onde uma ou mais destas permaneçam constantes, que a equação fundamental pudesse ser reescrita, sem perda de informação, em função destas grandezas intensivas.

Representações no Formalismo da Energia

A Transformada de Legendre cumpre exatamente o papel na termodinâmica de permitir que se escreva a equação fundamental de um sistema em função das grandezas intensivas (e/ou extensivas) associadas, e não apenas em função das correspondentes extensivas. Em acordo com a grandeza extensiva "transformada" para a intensiva a ela conjugada, dentro do formalismo da energia, a exemplo, surgem várias representações possíveis para a equação fundamental, a saber:

  • A energia interna U, onde  : a representação padrão no formalismo da energia.
  • A energia livre de Helmholtz F, onde : decorre da substituição da grandeza extensiva S em pela correspondente grandeza conjugada, T, mediante F= U-TS , sendo "mais adequada" para o estudo das transformações isotérmicas.
  • A entalpia H, onde : decorre da substituição da grandeza extensiva V em pela correspondente intensiva, P, mediante H= U+PV , sendo "mais adequada" para o estudo das transformações isobáricas.
  • A energia livre de Gibbs G, onde : decorre das substituições da grandeza extensiva S pela correspondente intensiva, T, e da grandeza extensiva V pela correspondente grandeza conjugada P em , mediante G= U-TS+PV , sendo "mais adequada" para o estudo de processos que ocorrem à temperatura e pressão constantes.
  • O grande potencial canônico, , decorre das substituições da grandeza extensiva S pela correspondente intensiva, T, e das grandezas extensivas pelas correspondentes intensivas em , mediante , sendo "mais adequada" para o estudo de processos onde ocorrem várias substâncias misturadas (N_1, N_2,...) e, mesmo em caso de substância única, trocas de partículas à temperatura constante.

Em função da entropia S ser sempre uma função monótona crescente da energia interna U, a equação fundamental fundamental pode sempre ser "facilmente" reescrita, mediante troca de variáveis, para fornecer a equação, também fundamental, , o que, de forma similar ao feito para o formalismo da energia, dá origem ao que se conhece por formalismo termodinâmico da entropia (ou entrópico), igualmente aplicável ao estudo dos sistemas termodinâmicos e capaz de fornecer os mesmos resultados e informações antes obtidos no formalismo da energia. Transformadas de Legendre podem ser igualmente aplicadas à equação fundamental em acordo com o caso em estudo, fornecendo equações fundamentais que nem sempre recebem nomes especiais, sendo estas gerericamente conhecidas por funções de Massieu. No formalismo da energia, a energia interna e suas transformadas são geralmente conhecidas por potenciais termodinâmicos.