Teorema da equipartição

Figura 1. Movimento térmico de um peptídeo em alfa-hélice. O movimento vibratório é aleatório e complexo, e a energia de um átomo em particular pode flutuar de maneira ampla. No entanto, o teorema da equipartição permite que se possa calcular a energia cinética média de cada átomo, como também as energias potenciais médias de muitos modos vibratórios. As esferas cinzentas, vermelhas e azuis representam átomos de carbono, oxigénio e nitrogénio, respectivamente; as esferas brancas menores representam átomos de hidrogénio.

Em mecânica estatística clássica, o teorema da equipartição é uma fórmula geral que relaciona a temperatura de um sistema com a sua energia média. O teorema da equipartição é também conhecido como lei da equipartição, equipartição de energia ou simplesmente equipartição. A ideia central da equipartição é a de que, em equilíbrio térmico, a energia é partilhada de maneira igual entre as suas várias formas. Por exemplo, a energia cinética média no movimento translacional de uma molécula deve ser igual à energia cinética média do seu movimento rotacional.

Da aplicação do teorema da equipartição surgem predições quantitativas. Tal como no teorema do virial, dá as energias cinética e potencial totais do sistema a uma dada temperatura, a partir da qual é possível calcular a capacidade térmica do sistema. No entanto, a equipartição também dá os valores médios dos componentes individuais da energia, tal como a energia cinética de uma partícula específica ou a energia potencial de uma única mola. Por exemplo, prediz que cada molécula num gás perfeito possui uma energia cinética média com um valor de (3/2)kBT, em equilíbrio térmico, onde kB é a constante de Boltzmann e T é a temperatura. De uma maneira mais geral, o teorema pode ser aplicado a qualquer sistema físico clássico em equilíbrio termodinâmico, não importando o seu grau de complexidade. O teorema pode ser utilizado para derivar a lei dos gases ideais e a lei de Dulong-Petit para os calores específicos dos sólidos. Também pode ser utilizado para prever as propriedades das estrelas, até mesmo de anãs brancas e estrelas de neutrões, dado que a sua validade se estende a situações em que efeitos relativistas são considerados.

Apesar de o teorema da equipartição proporcionar predições muito precisas em certas circunstâncias, isto não é assim quando os efeitos quânticos são significativos, nomeadamente quando estão em causa temperaturas suficientemente baixas. A equipartição é válida somente quando a energia térmica kBT é muito maior que o espaçamento entre os níveis de energia quânticos. Quando a energia térmica é menor que o espaçamento entre níveis de energia quânticos, num grau de liberdade específico, a energia média e a capacidade térmica deste grau de liberdade são menores que os valores preditos pela equipartição. Diz-se que tal grau de liberdade está "congelado". Por exemplo, o calor específico de um sólido diminui a baixas temperaturas dado que vários tipos de movimentos se congelam em vez de permanecerem constantes como prevê a equipartição. Estas reduções nos calores específicos foram dos primeiros sinais notados pelos físicos do século XIX no sentido de que a física clássica estaria incorrecta e que era necessário avançar no desenvolvimento de novas teorias físicas. Juntamente com outras evidências, a falha da equipartição no campo da radiação electromagnética — também conhecida como catástrofe ultravioleta — induziu Albert Einstein a sugerir que a luz estava quantizada em fotões, uma hipótese revolucionária que incentivou o desenvolvimento da mecânica quântica e da teoria quântica de campos.

Conceito básico e exemplos simples

Ver artigo principal: Energia cinética e Capacidade térmica
Figura 2. Funções de densidade de probabilidade da velocidade molecular de quatro gases nobres a uma temperatura de 298,15 K (25 °C). Os quatro gases são hélio (4He), néon (20Ne), argon (40Ar) y xénon (132Xe); os subíndices indicam os seus números de massa. Estas funções de densidade de probabilidade têm dimensões de probabilidade vezes o inverso da velocidade; dado que a probabilidade é adimensional, as mesmas expressam-se em unidades de segundos por metro.

A palavra "equipartição" significa "partilha por igual", derivando do latim equi da primeira parte da palavra, æquus ("igual ou plano"), e "partição" da segunda parte da palavra, partitionem ("divisão, parte").[1][2]

O conceito original da equipartição era a de que a energia cinética total de um sistema é compartilhada em partes iguais entre todas as partes independentes, em média, uma vez o sistema houvesse alcançado o equilíbrio térmico. A equipartição também faz predições quantitativas de ditas energias. Por exemplo, prediz que cada átomo de um gás nobre, em equilíbrio térmico à temperatura T, possui uma energia cinética translacional média de (3/2)kBT, onde kB é a constante de Boltzmann. Portanto, para uma mesma temperatura, os átomos mais pesados do xenón terão uma velocidade média menor que a dos átomos de hélio, que são mais leves. A Figura 2 mostra a distribuição de Maxwell-Boltzmann para as velocidades dos átomos nos quatro gases nobres.

É importante destacar neste exemplo, que a energia cinética depende de forma quadrática em relação à velocidade. O teorema da equipartição mostra que, em equilíbrio térmico, todo o grau de liberdade (como por exemplo, uma componente da posição ou velocidade de una partícula) que possui somente uma dependência quadrática na energia possui uma energia média de ½kBT e portanto contribui ½kB para a capacidade térmica do sistema. Isto possui numerosas aplicações.

Energia de translação e gases ideais

Ver artigo principal: Gás ideal

A energia cinética (newtoniana ou clássica) de uma partícula de massa m e velocidade v é dada pela expressão:

onde vx, vy e vz são as componentes cartesianas da velocidade v. H é o hamiltoniano, e portanto será utilizado como símbolo da energia dado que a mecânica de Hamilton desempenha um papel destacado na forma mais geral do teorema da equipartição.

Como a energia cinética é quadrática nos componentes da velocidade, por equipartição destas três componentes, cada uma contribui com ½kBT para a energia cinética média em equilíbrio térmico. Portanto, a energia cinética da partícula é (3/2)kBT, como no caso do exemplo dos gases nobres discutido previamente.

De forma mais geral, num gás ideal, a energia total consiste exclusivamente de energia cinética de translação: já que se assume que as partículas não possuem graus internos de liberdade e se movem de forma independente umas das outras. A equipartição portanto prediz que a energia total média de um gás ideal com N partículas é (3/2) N kBT.

Portanto, a capacidade térmica de um gás é (3/2) N kB e a capacidade térmica de um mol de partículas de dito gás é (3/2)NAkB=(3/2)R, onde NA é o número de Avogadro e R é a constante universal dos gases perfeitos. Como R ≈ 2 cal/(mol·K), a equipartição prediz que a capacidade térmica molar de um gás ideal é aproximadamente 3 cal/(mol·K). Esta predição foi confirmada experimentalmente[3].

A energia cinética média também permite calcular a raiz da velocidade quadrática média vrms das partículas de gás, como:

onde M = NAm é a massa de um mol de partículas de gás. Este resultado é muito útil para aplicações tais como a Lei de Graham de efusão, da qual se deriva um método para enriquecer Urânio.[4]

Energia rotacional e agitação molecular em solução

Ver artigo principal: Velocidade angular e Difusão rotacional

Um exemplo similar é o do caso de uma molécula que roda e cujos momentos de inercia principais são I1, I2 e I3. A energia rotacional de dita molécula é dada por:

onde ω1, ω2, e ω3 são os componentes da velocidade angular. Seguindo um raciocínio similar ao utilizado no caso da translacção, a equipartição implica que, em equilíbrio térmico, a energia média de rotação de cada partícula é (3/2)kBT. De forma similar, o teorema da equipartição permite calcular a velocidade angular média (mais precisamente, a raiz média quadrática) das moléculas.[5]

A rotação das moléculas rígidas — ou seja, as rotações aleatórias de moléculas em solução — joga um papel de destaque nas relaxações observadas por meio de ressonância magnética nuclear, particularmente por ressonância magnética nuclear de proteínas e por acoplamento dipolar residual.[6] A difusão rotacional pode também ser observada mediante outras técnicas biofísicas tais como a anisotropia fluorescente, a birrefringência de fluxo e a espectroscopia dieléctrica.[7]

Energia potencial e osciladores harmónicos

A equipartição aplica-se tanto à energia potencial com à energia cinética. Exemplo importante disto são os osciladores harmónicos tais como as molas, que possuem una energia potencial quadrática:

onde a constante a descreve a rigidez da mola e q é o desvio em relação ao equilíbrio. Se dito sistema unidimensional possui uma massa m, então a sua energia cinética Hkin é ½mv² = p²/2m, com v e p = mv a velocidade e o momento do oscilador, respectivamente. Combinando estes termos obtém-se a energia total[8]:

Deste modo, a equipartição implica que, em equilíbrio térmico, o oscilador possui uma energia média:

onde os colchetes angulares representam a média da quantidade contida entre eles,[9].

Este resultado é válido para todo o tipo de osciladores harmónicos, como por exemplo num pêndulo, numa molécula que vibra ou num oscilador electrónico passivo. Existem numerosos sistemas que contêm este tipo de osciladores; mediante a equipartição, cada um destes osciladores recebe uma energia média total kBT e portanto contribui kB para a capacidade térmica do sistema. Esta última relação pode ser usada para obter a fórmula para o ruído de Johnson–Nyquist ou "ruído térmico"[10] e a Lei de Dulong-Petit para a capacidade térmica molar dos sólidos. Esta última aplicação foi especialmente relevante na história da equipartição.

Capacidade térmica dos sólidos

Figura 3. Os átomos numa rede cristalina podem vibrar em redor das suas posições de equilíbrio na rede. Estas vibrações, em grande medida representam a capacidade térmica dos dielétricos cristalinos; com os electrões metálicos também contribuindo para a capacidade térmica.

Uma aplicação importante do teorema da equipartição é o do cálculo da capacidade térmica de um sólido cristalino. Cada átomo neste tipo de sólido pode oscilar em três direcções independentes, pelo que se pode pensar o sólido como sendo um sistema de 3N osciladores harmónicos simples independentes, onde N é o número de átomos na rede. Dado que cada oscilador harmónico possui uma energia média kBT, a energia total média do sólido é 3NkBT, e a sua capacidade térmica é 3NkB.

Tomando o número de Avogadro NA, e utilizando a relação R = NAkB entre a constante dos gases R e a constante de Boltzmann kB, encontra-se uma explicação para a lei de Dulong-Petit relativa às capacidades térmicas molares dos sólidos, que estabelece que a capacidade térmica por mol de átomos na rede é 3R ≈ 6 cal/(mol·K).

No entanto, esta lei não reproduz os dados experimentais a baixas temperaturas, devido à presença de efeitos quânticos; também é inconsistente com a terceira lei da termodinâmica, de acordo com a qual a capacidade térmica molar de qualquer substância deve tender a zero quando a temperatura se aproxima do zero absoluto.[10] Uma teoria mais precisa, que incorpora efeitos quânticos, foi desenvolvida por Albert Einstein (1907) e Peter Debye (1911).[11]

É possível representar outros numerosos sistemas físicos como conjuntos de osciladores acoplados. Os movimentos destes osciladores pode-se decompor em modos normais, similares aos modos de vibração de uma corda de piano ou das ressonâncias de um tubo de órgão. Por outra lado, a equipartição muitas vezes não funciona em ditos sistemas, porque não existe intercâmbio de energia entre os modos normais. Num caso extremo, os modos são independentes e portanto as suas energias se conservam de forma independente. Isto mostra que algum tipo de mistura de energias, chamada ergodicidade, é importante para que seja válida a lei da equipartição.

Sedimentação de partículas

A energia potencial nem sempre possui uma dependência quadrática em relação à posição. No entanto, o teorema da equipartição também demonstra que se um grau de liberdade x contribui somente em uma fracção xs (para um número real fixo s) para a energia, então a energia média em equilíbrio térmico dessa parte é kBT/s.

Esta extensão possui uma aplicação no estudo de sedimentação de partículas sob acção da força de gravidade.[12] Por exemplo, o enevoado que por vezes é observado na cerveja pode ser causada por aglutinações de proteínas que dispersam a luz.[13] Como decorrer do tempo, estas aglutinações deslocam-se para baixo por efeito da força da gravidade, produzindo um aumento do enevoamento próximo da zona inferior do recipiente comparado com a zona superior. No entanto, mediante um processo que opera em direcção contrária, as partículas também difundem em sentido ascendente, em direcção à parte superior do recipiente. Uma vez alcançado o equilíbrio, o teorema da equipartição pode ser utilizado para determinar a posição média de una aglutinação particular de massa flutuante mb. Para o caso de uma garrafa de cerveja de altura infinita, a energia potencial gravitacional é:

onde z é a altura da aglutinação de proteínas na garrafa e g é a aceleração da gravidade. Dado que s=1, a energia potencial média de um aglutinação de proteínas é kBT. Portanto, uma aglutinação de proteínas com uma massa flutuante de 10 MDa (aproximadamente do tamanho de um vírus) produziria um enevoamento com uma altura média de aproximadamente 2 cm, em equilíbrio. O processo de sedimentação até se estabelecer um equilíbrio é descrito pela equação de Mason-Weaver.[14]