Matemática

Question book-4.svg
Esta página ou secção cita fontes confiáveis e independentes, mas que não cobrem todo o conteúdo, o que compromete a verificabilidade (desde fevereiro de 2012). Por favor, insira mais referências no texto. Material sem fontes poderá ser acadêmico)
Euclides, matemático grego, representado por Rafael em A Escola de Atenas.

A matemática (dos termos gregos μάθημα, transliterado máthēma, 'ciência', conhecimento' ou 'aprendizagem';[1] e μαθηματικός, transliterado mathēmatikós, 'inclinado a aprender') é a ciência do raciocínio lógico e abstrato, que estuda quantidades, medidas, espaços, estruturas, variações e estatísticas. Um trabalho matemático consiste em procurar por padrões, formular conjecturas e, por meio de deduções rigorosas a partir de axiomas e definições, estabelecer novos resultados. A matemática desenvolveu-se principalmente na Mesopotâmia, no Egito, na Grécia, na Índia e no Oriente Médio. A partir da Renascença, o desenvolvimento da matemática intensificou-se na Europa, quando novas descobertas científicas levaram a um crescimento acelerado que dura até os dias de hoje.[2]

Registros arqueológicos mostram que a matemática é tanto um fator cultural, quanto parte da história do desenvolvimento da nossa espécie. Ela evoluiu a partir de contagens, medições, cálculos e do estudo sistemático de formas geométricas e movimentos de objetos físicos. Raciocínios mais abstratos que envolvem argumentação lógica surgiram com os matemáticos gregos aproximadamente em 300 a.C., notadamente com a obra Os Elementos, de Euclides. A necessidade de maior rigor foi percebida e estabelecida por volta do início do século XVIII.[3]

Há muito tempo, busca-se um consenso quanto à definição do que é a matemática. No entanto, nas últimas décadas do século XX, tomou forma uma definição que tem ampla aceitação entre os matemáticos: matemática é a ciência das regularidades (padrões). Segundo esta definição, o trabalho do matemático consiste em examinar padrões abstratos, tanto reais como imaginários, visuais ou mentais. Ou seja, os matemáticos procuram regularidades nos números, no espaço, na ciência e na imaginação e formulam teorias com as quais tentam explicar as relações observadas. Uma outra definição seria que matemática é a investigação de estruturas abstratas definidas axiomaticamente, usando a lógica formal como estrutura comum. As estruturas específicas geralmente têm sua origem nas ciências naturais, mais comumente na física, mas os matemáticos também definem e investigam estruturas por razões puramente internas à matemática (matemática pura), por exemplo, ao perceberem que as estruturas fornecem uma generalização unificante de vários subcampos ou uma ferramenta útil em cálculos comuns.[3][4]

A matemática é usada como uma ferramenta essencial em muitas áreas do conhecimento, tais como engenharia, medicina, física, química, biologia, e ciências sociais. Matemática aplicada, ramo da matemática que se ocupa de aplicações do conhecimento matemático em outras áreas do conhecimento, às vezes leva ao desenvolvimento de um novo ramo, como aconteceu com estatística ou teoria dos jogos. O estudo de matemática pura, ou seja, quase sempre sem a preocupação imediata com sua aplicabilidade, muitas vezes mostrou-se útil anos ou séculos adiante, como aconteceu com os estudos das cônicas ou de teoria dos números feitos pelos gregos, úteis, respectivamente, em descobertas sobre astronomia feitas por Kepler no século XVII, ou para o desenvolvimento de segurança em computadores nos dias de hoje.[4]

História

Ver artigo principal: História da matemática

Além de reconhecer quantidades de objetos, o homem pré-histórico aprendeu a contar quantidades abstratas como o tempo: dias, estações, anos. A aritmética elementar (adição, subtração, multiplicação e divisão) também foi conquistada naturalmente. Acredita-se que esse conhecimento é anterior à escrita e, por isso, não há registros históricos.

O primeiro objeto conhecido que confirma a habilidade de cálculo é o osso de Ishango, uma fíbula de babuíno com riscos que indicam uma contagem, que data de 20 000 anos atrás[5].

Muitos sistemas de numeração existiram. O Papiro de Rhind é um documento que resistiu ao tempo e mostra os numerais escritos no Antigo Egito.

O desenvolvimento da matemática permeou as primeiras civilizações, e tornou possível o desenvolvimento de aplicações concretas: o comércio, o manejo de plantações, a medição de terra, a previsão de eventos astronômicos, e por vezes, a realização de rituais religiosos.

A matemática começou a ser desenvolvida motivada pelo comércio, medições de terras para a agricultura, registro do tempo, astronomia. A partir de 3000 a.C., quando Babilônios e Egípcios começaram a usar aritmética e geometria em construções, astronomia e alguns cálculos financeiros, a matemática começou a se tornar um pouco mais sofisticada.[6] O estudo de estruturas matemáticas começou com a aritmética dos números naturais, seguiu com a extração de raízes quadradas e cúbicas, resolução de algumas equações polinomiais de grau 2, trigonometria, frações, entre outros tópicos.

Euclides: painel em mármore no Museo dell'Opera di Santa Maria del Fiore.

Tais desenvolvimentos são creditados às civilizações acadiana, babilônica, egípcia, chinesa, ou ainda, àquelas do vale do Indo. Por volta de 600 a.C., na civilização grega, a matemática, influenciada por trabalhos anteriores e pela filosofia, tornou-se mais abstrata. Dois ramos se distinguiram: a aritmética e a geometria. Formalizaram-se as generalizações, por meio de definições axiomáticas dos objetos de estudo, e as demonstrações. A obra Os Elementos de Euclides é um registro importante do conhecimento matemático na Grécia do século III a.C.

A civilização muçulmana permitiu que a herança grega fosse conservada, e propiciou seu confronto com as descobertas chinesas e hindus, notadamente na questão da representação numérica.[carece de fontes?] Os trabalhos matemáticos desenvolveram-se consideravelmente tanto na trigonometria, com a introdução das funções trigonométricas, quanto na aritmética. Desenvolveu-se ainda a análise combinatória, a análise numérica e a álgebra de polinômios.

Na época do Renascentismo, uma parte dos textos árabes foi estudada e traduzida para o latim. A pesquisa matemática se concentrou então na Europa. O cálculo algébrico desenvolveu-se rapidamente com os trabalhos dos franceses François Viète e René Descartes. Nessa época também foram criadas as tabelas de logaritmos, que foram extremamente importantes para o avanço científico dos séculos XVI a XX, sendo substituídas apenas após a criação de computadores. A percepção de que os números reais não são suficientes para resolução de certas equações também data do século XVI. Já nessa época começou o desenvolvimento dos chamados números complexos, apenas com uma definição e quatro operações. Uma compreensão mais profunda dos números complexos só foi conquistada no século XVIII com Euler.

No início do século XVII, Isaac Newton e Gottfried Wilhelm Leibniz descobriram a noção de cálculo infinitesimal e introduziram a noção de fluxor (vocábulo abandonado posteriormente). Ao longo dos séculos XVIII e XIX, a matemática se desenvolveu fortemente com a introdução de novas estruturas abstratas, notadamente os grupos (graças aos trabalhos de Évariste Galois) sobre a resolubilidade de equações polinomiais, e os anéis definidos nos trabalhos de Richard Dedekind.

O rigor em matemática variou ao longo do tempo: os gregos antigos foram bastante rigorosos em suas argumentações; já no tempo da criação do Cálculo Diferencial e Integral, como as definições envolviam a noção de limite que, pelo conhecimento da época, só poderia ser tratada intuitivamente, o rigor foi menos intenso e muitos resultados eram estabelecidos com base na intuição. Isso levou a contradições e "falsos teoremas". Com isso, por volta do século XIX, alguns matemáticos, tais como Bolzano, Karl Weierstrass e Cauchy dedicaram-se a criar definições e demonstrações mais rigorosas.

A matemática ainda continua a se desenvolver intensamente por todo o mundo nos dias de hoje.

No Brasil

O ensino da matemática e, na verdade, de outras matérias, desde o descobrimento do Brasil, era ministrado pelos jesuítas até a expulsão deles em 1759. Desta data até 1808, os ex-alunos dos jesuítas ficaram encarregados pelo ensino. De 1808 a 1834, a matéria era ministrada nas escolas do Exército e da Marinha e a, partir de 1873, também nas escolas de engenharia. Em 1874, é criada a Escola Politécnica a partir da Escola Central, ex-Escola Militar. A Escola de Minas de Ouro Preto é criada em 1875 e a Escola Politécnica de São Paulo em 1893. Assim, o ensino de matemática passa também a ser oferecido em escolas não militares.[7]