Lógica matemática

Lógica Matemática é uma sub-área da matemática que explora as aplicações da lógica formal para a matemática. Basicamente, tem ligações fortes com matemática, os fundamentos da matemática e ciência da computação teórica.[1] Os temas unificadores na lógica matemática incluem o estudo do poder expressivo de sistemas formais e o poder dedutivo de sistemas de prova matemática formal.

A lógica matemática é muitas vezes dividida em campos da teoria dos conjuntos, teoria de modelos, teoria da recursão e teoria da prova. Estas áreas compartilham resultados básicos sobre lógica, particularmente lógica de primeira ordem, e definibilidade. Na ciência da computação, especialmente na classificação ACM, onde ACM vem do inglês (Association for Computing Machinery) , lógica matemática engloba tópicos adicionais não descritos neste artigo; ver lógica em ciência da computação para este tópico anterior.

Desde o seu surgimento, a lógica matemática tem contribuído e motivado pelo estudo dos fundamentos da matemática. Este estudo foi iniciado no final do século XIX, com o desenvolvimento de arcabouço axiomático para geometria, aritmética e análise. No início do século XX a lógica matemática foi moldada pelo programa de David Hilbert para provar a consistência das teorias fundamentais. Os resultados de Kurt Godel, Gerhard Gentzen, e outros, desde resolução parcial do programa, e esclareceu as questões envolvidas em provar a consistência. O trabalho na teoria dos conjuntos mostrou que quase toda a matemática ordinária pode ser formalizada em termos de conjuntos, embora existam alguns teoremas que não podem ser demonstrados em sistemas axiomáticos comuns para a teoria dos conjuntos. O trabalho contemporâneo nos fundamentos da matemática, muitas vezes se concentra em estabelecer quais as partes da matemática que podem ser formalizadas, em particular, sistemas formais (como em matemática reversa) ao invés de tentar encontrar as teorias em que toda a matemática pode ser desenvolvida.

Sub-áreas e escopo O manual de lógica matemática divide a matemática contemporânea em quatro áreas:

  1. Teoria dos conjuntos;
  2. teoria dos modelos;
  3. teoria da recursão;
  4. teoria da prova e da matemática construtiva consideradas partes de uma única área.

Cada área tem um foco distinto, apesar de ter várias técnicas e resultados comuns entre si. A divisão das referidas áreas e os limites que separam a lógica matemática de outros campos de estudo não são bem definidas. A teoria da incompletude de Gödel representa não só um marco na teoria da recursão e teoria da prova, mas também contribuiu para o teorema de Löb da teoria dos modelos. O método do forçamento ("forcing") é aplicada na teoria dos conjuntos, na teoria dos modelos, na teoria da recursão, assim como no estudos da matemática intuiticionística.

O campo matemático conhecido como o da teoria das categorias usa muitos métodos axiomáticos formais nos quais se inclui o estudo da lógica categórica, mas essa teoria não é comumente considerada um sub-ramo da lógica. Por causa da sua aplicabilidade em diversos campos da lógica, matemáticos como Saunders Mac Lane propuseram usar a teoria das categorias como fundamentos da matemática, independentemente da teoria dos conjuntos. Essas fundamentações usam tópicos que em muito se parecem com modelos generalizados das teorias dos conjuntos, e empregam lógica clássica ou não-clássica.

História

A lógica matemática surgiu em meados do século XIX como um sub-ramo da Matemática e independente do estudo tradicional da lógica (Ferreirós 2001, p. 443). Antes do seu surgimento independente, a lógica foi estudada com a retórica, através do silogismo e a filosofia. Na primeira metade do século XX houve uma explosão de resultados fundamentais, acompanhados por debates vigorosos sobre as bases da matemática.

Os estudos sobre o raciocínio foram inicialmente desenvolvidos por filósofos como Parménides e Platão, mas foi Aristóteles quem o elaborou mais detalhadamente e definiu a lógica como se estuda hoje em dia (como se estudava até o século XIX).

Para mostrar que os sofistas (mestres da retórica e da oratória) podiam enganar os cidadãos utilizando argumentos incorretos, Aristóteles estudou a estrutura lógica da argumentação. Revelando, assim, que alguns argumentos podem ser convincentes, embora não sejam corretos. A lógica, segundo Aristóteles, é um instrumento para atingir o conhecimento científico, baseando-se no silogismo.

Seguidores de Aristóteles reuniram seus princípios sobre lógica em um livro intitulado “Organon”, que significa “Instrumento da Ciência”.

História moderna

Mais informações: História da lógica

Teorias lógicas foram desenvolvidas em diversas culturas na história, China, Índia, Grécia e no mundo Islâmico. Na Europa do século XVIII, filósofos matemáticos, como Leibniz e Lambert tentaram representar as operações da lógica formal através de símbolos, de forma algébrica mas seus esforços e trabalhos permaneceram isolados e pouco reconhecidos.

Século XIX

Em meados do século XIX, George Boole e posteriormente Augustus De Morgan apresentaram tratamentos matemáticos sistemáticos. Seus trabalhos, alicerçados em trabalhos de algebristas como George Peacock, transformaram a doutrina tradicional de Aristóteles de forma que se encaixasse no estudo dos fundamentos da matemática (Katz 1998, p. 686). Charles Sanders Peirce construiu sobre os estudos de Boole almejando desenvolver uma sistema de relações lógica e quantificadores o qual ele publicou diversas vezes entre 1870 e 1885. Gottlob Frege apresentou um desenvolvimento independente da lógica com quantificadores no seu Begriffsschrift, publicado em 1879, um trabalho por muitos considerado como uma reviravolta na histórica da lógica. O trabalho de Frege's permaneceu incerto,pelo menos até Bertrand Russell começar a promovê-lo no início da virada do século. As notações bidimensionais desenvolvidas por Frege nunca foram vastamente adotadas e caiu em desuso nos artigos e textos contemporâneos.

De 1890 a 1905, Ernst Schröder publicou o Vorlesungen über die Algebra der Logik em três volumes. Esse trabalho compactava e desenvolvia os trabalhos de Boole, De Morgan, e Peirce e se tornou uma grande referência para lógica simbólica, como era conhecida no fim do século XIX.

Fundamentos teóricos

Preocupações com a possível ausência de fundamentos matemáticos acarretaram o desenvolvimento de sistemas axiomáticos para áreas da matemática fundamental como a aritmética, análise e geometria.

Em lógica o termo aritmético se refere à teoria dos números naturais. Giuseppe Peano (1889) publicou uma série de axiomas para serem usados pela aritmética que hoje carregam seu nome (Axiomas de Peano), usando variações do sistema lógico de Boole e Schröder, porém adicionando quantificadores. Peano não tinha conhecimento do trabalho de Frege. Contemporaneamente Richard Dedekind mostrou que os números naturais são unicamente caracterizados por suas propriedades da indução. Dedekind (1888) propôs a diferente caracterização na qual não existia a essência da lógica formal dos axiomas de Peano. Todavia, o trabalho de Dedekind's provou teoremas inacessíveis ao sistema desenvolvido por Peano, como por exemplo a inclusão da individualidade dos conjuntos de números naturais (até o isomorfismo) e as definições recursivas de adição e multiplicação da função sucessor e indução matemática.

No meio do século XIX, foram descobertas falhas nos axiomas de Euclides para geometria (Katz 1998, p. 774). Além da independência do postulado paralelo, estabelecido por Nikolai Lobachevsky em 1826 (Lobachevsky 1840), matemáticos descobriram que certos teoremas tomadas como certo por Euclides não eram de fato demonstrável a partir de seus axiomas. Entre eles está o teorema que diz que uma linha contem pelo menos dois pontos, ou que círculos de mesmo raio cujo centro é separado pelo raio devem intersectar. Hilbert (1899) desenvolveu um conjunto completo dos axiomas para geometria, construindo nos [axiomas de Pasch] pelo Pasch (1882). O sucesso axiomatização da geometria motivou Hilbert a encontrar axiomatições completas de outras áreas da matemática, assim como os números naturais e da linha real. Isto proveria a maior área de pesquisa na primeira metade do século XX.