Georg Cantor

George Cantor
Georg Ferdinand Ludwig Philipp Cantor
Conhecido(a) porConjunto de Cantor
Poeira de Cantor
Argumento de diagonalização de Cantor
Teorema de Cantor-Bernstein-Schroeder
Cubo de Cantor
Nascimento3 de março de 1845
São Petersburgo, Império Russo
Morte6 de janeiro de 1918 (72 anos)
Halle an der Saale
Residência Rússia (1845–1856),  Alemanha (1856–1918)
NacionalidadeAlemão
Alma materInstituto Federal de Tecnologia de Zurique, Universidade Humboldt de Berlim
PrêmiosMedalha Sylvester (1904)
Orientador(es)Ernst Kummer e Karl Weierstrass[1]
Orientado(s)Alfred Barneck
InstituiçõesUniversidade de Halle-Wittenberg
Campo(s)Matemática
Tese1867: De aequationibus secundi gradus indeterminatis

Georg Ferdinand Ludwig Philipp Cantor (São Petersburgo, 3 de março de 1845Halle, 6 de janeiro de 1918) foi um matemático alemão nascido no Império Russo.

Conhecido por ter elaborado a moderna teoria dos conjuntos, foi a partir desta teoria que chegou ao conceito de número transfinito, incluindo as classes numéricas dos cardinais e ordinais e estabelecendo a diferença entre estes dois conceitos, que colocam novos problemas quando se referem a conjuntos infinitos. Nasceu em São Petersburgo (Rússia), filho do comerciante dinamarquês, George Waldemar Cantor, e de uma musicista russa, Maria Anna Böhm. Em 1856 sua família mudou-se para a Alemanha, continuando aí os seus estudos. Estudou no Instituto Federal de Tecnologia de Zurique. Doutorou-se na Universidade de Berlim em 1867. Teve como professores Ernst Kummer, Karl Weierstrass e Leopold Kronecker.[2]

Em 1872 foi docente na Universidade de Halle-Wittenberg, na cidade alemã Halle an der Saale, onde obteve o título de professor em 1879. Toda a sua vida irá tentar em vão deixar a cidade, tendo acabado por pensar que era vítima de uma conspiração.[3]

Cantor provou que os conjuntos infinitos não têm todos a mesma potência (potência significando "tamanho"). Fez a distinção entre conjuntos numeráveis (ou enumeráveis) (em inglês chamam-se countable - que se podem contar) e conjuntos contínuos (ou não-enumeráveis) (em inglês uncountable - que não se podem contar). Provou que o conjunto dos números racionais Q é (e)numerável, enquanto que o conjunto dos números reais IR é contínuo (logo, maior que o anterior). Na demonstração foi utilizado o célebre argumento da diagonal de Cantor ou método diagonal. Nos últimos anos de vida tentou provar, sem o conseguir, a "hipótese do contínuo", ou seja, que não existem conjuntos de potência intermédia entre os numeráveis e os contínuos - em 1963, Paul Cohen demonstrou a indemonstrabilidade desta hipótese. Em 1897, Cantor descobriu vários paradoxos suscitados pela teoria dos conjuntos. Foi ele que utilizou pela primeira vez o símbolo para representar o conjunto dos números reais.[4]

Durante a última metade da sua vida sofreu repetidamente de ataques de depressão, o que comprometeu a sua capacidade de trabalho e o forçou a ficar hospitalizado várias vezes. Provavelmente ser-lhe-ia diagnosticado, hoje em dia, um transtorno bipolar - vulgo maníaco-depressivo. A descoberta do Paradoxo de Russell conduziu-o a um esgotamento nervoso do qual não chegou a se recuperar. Começou, então, a se interessar por literatura e religião. Desenvolveu o seu conceito de Infinito Absoluto, que identificava a Deus. Ficou na penúria durante a Primeira Guerra Mundial, morrendo num hospital psiquiátrico em Halle.[5]

Nas palavras de David Hilbert: "Ninguém nos poderá expulsar do Paraíso que Cantor criou."[6]

Biografia

Georg Cantor nasceu em 1845 na colônia mercantil de São Petersburgo, na Rússia, onde viveu até os onze anos de idade. Georg, o mais velho de seis filhos, era considerado um excelente violinista. Seu avô Franz Böhm (1788-1846) (irmão do violinista Joseph Böhm) foi um solista conhecido, tocando inclusive na orquestra imperial russa. O pai de Cantor foi membro da bolsa de valores de São Petersburgo; quando ficou doente, a família mudou-se para a Alemanha em 1856, primeiro para Wiesbaden, depois para Frankfurt, em busca de invernos mais amenos do que os de São Petersburgo. Em 1860, Cantor se formou com méritos na Realschule em Darmstadt; suas habilidades excepcionais em matemática, (trigonometria em particular), atraíram atenção acadêmica. Em 1862, Cantor entrou na Instituto Federal de Tecnologia de Zurique. Depois de receber uma herança substancial com a morte de seu pai em junho de 1863, Cantor transferiu seus estudos para a Universidade de Berlim, onde assistiu a palestras de Leopold Kronecker, Karl Weierstrass e Ernst Kummer. Ele passou o verão de 1866 na Universidade de Göttingen, doutorando-se em 1867.[7]