Função divisor

Em matemática, especialmente na teoria dos números e na teoria analítica dos números, uma função divisor, mais apropriadamente chamada função soma dos divisores, é uma função aritmética que associa a cada número natural n a soma das k-ésimas potências de seus divisores inteiros positivos, onde k é um número complexo (na teoria dos números clássica o expoente é geralmente um número inteiro). Quando o expoente k é nulo, a função retorna a contagem de divisores positivos de n. Denotada pela letra grega (sigma), ela está presente em várias relações, incluindo a função zeta de Riemann e a série de Eisenstein de uma forma modular. Essas funções foram bastante estudadas por Srinivasa Ramanujan, matemático indiano responsável por um grande número de congruências e identidades a elas referentes.

Definição

Uma função divisor é definida como uma regra que associa a uma variável natural n a soma das k-ésimas potências (complexas) dos divisores d (naturais) de n. Dessa forma, pode-se expressar:

As notações (n), (n) e (n) também são utilizadas para denotar (n), particularmente denominada de função número-de-divisores[1][2] (sequência A000005 na OEIS), indicando a quantidade de divisores inteiros positivos de n. Dessa maneira, o expoente k dos divisores de n na expressão acima é igual a zero e assim tem-se

.

Quando o expoente k é igual a 1, a função é chamada função soma-dos-divisores e o índice "1" é geralmente omitido. Como o próprio nome informa, (n) associa ao inteiro n a soma de seus divisores naturais, de forma que

.

Define-se ainda uma função - denotada por (n) - que associa ao natural n a soma de seus divisores próprios, o que exclui o próprio n. Subsequentemente pode-se escrever

.

Apesar da maneira aparentemente simples de definir a função, o cálculo do seu valor pode ser uma tarefa muito trabalhosa, conforme seja grande o valor de n (posto que se faz necessário conhecer seus divisores) ou na hipótese de serem usados expoentes complexos.

Exemplos

  • (30) fornece o número de divisores inteiros positivos de 30:
  • (30) é a soma dos divisores de 30:
  • (30) é a soma dos inversos dos divisores de 30: