Espectrofotometria

Espectrofotômetro

A espectrofotometria é o método de análises óptico mais utilizado nas investigações biológicas e físico-químicas. Baseia-se na medida quantitativa da absorção da luz pelas soluções, onde a concentração na solução da substância absorvente é proporcional à quantidade de luz absorvida. Estas medidas são efetuadas por equipamentos denominados espectrofotômetros.

As radiações eletromagnéticas com comprimento de onda entre 380 e 750 nm são visíveis ao olho humano. A luz visível constitui uma parcela muito pequena no espectro eletromagnético. A zona do espectro cujas radiações possuem um comprimento de onda abaixo de 380 nm é denominada ultravioleta (UV). Comprimentos de onda acima de 750 nm correspondem à zona infravermelha. A visão humana detecta somente a parte visível do espectro, enquanto filmes fotográficos e fotocélulas são sensíveis a outras porções do espectro.

Quando a luz branca (luz solar) passa através de um prisma (ou retículo de difração), ela se decompõe em raios de luz e em distintos comprimentos de onda. A projeção desses raios emitidos em um anteparo produz uma faixa de cores que vai desde o vermelho até o violeta, denominada espectro de emissão. A cor da luz é função do seu comprimento de onda. Na Tabela 1.0 são mostrados os diferentes comprimentos de onda com as respectivas características do espectro de luz visível, ultravioleta e infravermelho.

As soluções são coloridas para o olho humano quando absorvem toda a luz incidente, com exceção do intervalo de comprimento de onda observado pela visão. Desse modo, uma solução azul apresenta esta cor em virtude de as demais cores que constituem o espectro terem sido absorvidas. Assim, a cor de uma solução é complementar à luz absorvida.

Tabela 1.0 - Intervalos de comprimento de onda no espectro eletomagnético
CoresIntervalos de comprimento de onda (nm)
Ultravioleta (não visível)<380
Violeta

Azul

Verde

Amarela

Alaranjada

Vermelha

380 a 450

450 a 500

500 a 570

570 a 590

590 a 620

620 a 750

Infravermelha curta750 a 2000

Segundo a natureza da solução examinada, obtêm-se os espectros de absorção da luz de tal modo que a imagem espectral pode servir para a identificação de uma determinada substância.

Tipos

Espectrofotometria astronómica

Os astrônomos utilizam redes de difração para estudar o espectro de energia da radiação eletromagnética dos astros coletada nos telescópios. A rede de difração é o artefato que substitui o antigo prisma óptico na pesquisa científica. Sua qualidade se mede pelo poder de separação de duas linhas de absorção ou de emissão do espectro eletromagnético de uma estrela, isto é, pela sua resolução espectral.

Espectrofotometria de absorção atómica

É o método de análise usado para determinar quantitativamente a presença de metais. O método consiste em determinar a presença e quantidade de um determinado metal em uma solução qualquer, usando como princípio a absorção de radiação ultravioleta por parte dos elétrons que, ao sofrerem um salto quântico depois de devidamente excitados por uma chama de gás acetileno a 3000 graus Celsius, esses devolvem a energia recebida para o meio, voltando assim para a sua camada orbital de origem. A energia devolvida na forma de um fóton de luz, por sua vez, absorve a radiação ultravioleta emitida pela fonte específica (cátodo oco) do elemento químico em questão. Dessa forma, elétrons que estão contidos na solução, e que sofrem também um salto quântico e que não pertencem ao mesmo elemento que constitui o cátodo oco que está sendo usado no momento, não serão capazes de causar uma interferência, isso porque eles absorverão apenas radiação com comprimento de onda referente ao elemento químico do qual fazem parte.

Espectrofotometria no Infra-vermelho

Os compostos orgânicos também absorvem radiações na região do infravermelho (IV) do espectro. A radiação infravermelha não tem energia suficiente para excitar os elétrons e provocar transições eletrônicas, mas ela faz com que os átomos ou grupos de átomos vibrem com maior rapidez e com maior amplitude em torno das ligações covalentes que os unem.

Estas vibrações são quantizadas e, quando ocorrem, os compostos absorvem energia IV em certas regiões do espectro. Nas vibrações, as ligações covalentes comportam-se como se fossem pequenas molas unindo os átomos. Quando os átomos vibram, só podem oscilar com certas frequências, e as ligações sofrem várias deformações. Quando a ligação absorve energia, ela sofre alterações e, ao retornar ao estado original, libera essa energia, que então é detectada pelo espectrômetro. Estas vibrações são quantizadas e, quando ocorrem, os compostos absorvem energia IV em certas regiões do espectro. Nas vibrações, as ligações covalentes comportam-se como se fossem pequenas molas unindo os átomos.

Quando os átomos vibram, só podem oscilar com certas frequências, e as ligações sofrem várias deformações. Quando a ligação absorve energia, ela sofre alterações e, ao retornar ao estado original, libera essa energia, que então é detectada pelo espectrômetro. As moléculas podem vibrar de muitos modos. Dois átomos unidos por uma ligação covalente podem efetuar vibrações de estiramento dessa ligação, como se fosse uma mola que estica e retorna ao tamanho original.

Três átomos também podem efetuar diferentes vibrações de estiramento e alteração dos ângulos de ligação, em vários planos do espaço. No entanto, as vibrações de estiramento são as mais importantes.

A radiação infravermelha é outra espécie de radiação eletromagnética cujo espectro começa num dos limites do espectro da luz (o vermelho) e se estende até à zona das ondas hertzianas (radar, televisão, rádio). É caracterizada por um comprimento de onda compreendido entre cerca de 800 e 105 nm. Nas moléculas, os átomos e os grupos atômicos estão em contínuo movimento, uns em relação aos outros (vibrações moleculares). Quando elas são sujeitas a radiação com energia semelhante à correspondente a essas vibrações (radiação infravermelha), as moléculas podem alterar o seu estado de vibração (excitação), absorvendo a radiação correspondente à diferença de energia entre o estado inicial e o estado excitado. Como não é possível a uma molécula vibrar de qualquer modo, mas apenas de alguns modos, a absorção da radiação ocorre apenas para determinados valores da energia, valores estes que são característicos das moléculas. Assim, através da comparação dos valores de energia da radiação infravermelha para os quais há absorção, é possível identificar as moléculas ou os tipos de moléculas presentes nas amostras.

A espectrofotometria infravermelho próximo oferece um método rápido de análise química que fornece, em segundos, resultados de múltiplas propriedades em amostras não preparadas.