Efeito fotoelétrico

Question book-4.svg
Esta página ou secção cita fontes confiáveis e independentes, mas que não cobrem todo o conteúdo, o que compromete a verificabilidade (desde janeiro de 2013). Por favor, insira mais referências no texto. Material sem fontes poderá ser acadêmico)
Representação esquemática do efeito fotoelétrico

O efeito fotoelétrico é a emissão de elétrons por um material, geralmente metálico, quando exposto a uma radiação eletromagnética (como a luz) de frequência suficientemente alta, que depende do material, como por exemplo a radiação ultravioleta. Ele pode ser observado quando a luz incide numa placa de metal, arrancando elétrons da placa. Os elétrons ejetados são denominados fotoelétrons.[1]

Observado pela primeira vez por A. E. Becquerel em 1839 e confirmado por Heinrich Hertz em 1887,[2] o fenômeno é também conhecido por "efeito Hertz",[3][4] não sendo porém este termo de uso comum.

De acordo com a teoria eletromagnética clássica, o efeito fotoelétrico poderia ser atribuído à transferência de energia da luz para um elétron. Nessa perspectiva, uma alteração na intensidade da luz induziria mudanças na energia cinética dos elétrons emitidos do metal. Além disso, de acordo com essa teoria, seria esperado que uma luz suficientemente fraca mostrasse um intervalo de tempo entre o brilho inicial de sua luz e a emissão subsequente de um elétron. No entanto, os resultados experimentais não se correlacionaram com nenhuma das duas previsões feitas pela teoria clássica.

Em vez disso, os elétrons são desalojados apenas pelo impacto dos fótons quando esses fótons atingem ou excedem uma frequência limite (energia). Abaixo desse limite, nenhum elétron é emitido do material, independentemente da intensidade da luz ou do tempo de exposição à luz (raramente, um elétron irá escapar absorvendo dois ou mais quanta; no entanto, isso é extremamente raro porque ao absorver quanta suficiente para escapar, o elétron provavelmente terá emitido o resto dos quanta absorvidos). Para dar sentido ao fato de que a luz pode ejetar elétrons mesmo que sua intensidade seja baixa, Albert Einstein propôs que um feixe de luz não é uma onda que se propaga através do espaço, mas uma coleção de pacotes de ondas discretas (fótons), cada um com energia. Isso esclareceu a descoberta anterior de Max Planck da relação de Planck (E = hν), ligando energia (E) e frequência (ν) como decorrentes da quantização de energia. O fator h é conhecido como a constante de Planck.[5][6][1] A explicação satisfatória para o efeito fotoelétrico, dada em 1905 por Albert Einstein, deu ao cientista alemão o prêmio Nobel de Física de 1921.

Tomemos um exemplo: a luz vermelha de baixa frequência estimula os elétrons para fora de uma peça de metal; na visão clássica, a luz é uma onda contínua cuja energia está espalhada sobre a onda. Todavia, quando a luz fica mais intensa, mais elétrons são ejetados, contradizendo, assim a visão da física clássica que sugere que os mesmos deveriam se mover mais rápido (energia cinética) do que as ondas incidentes.

Quando a luz incidente é de cor azul, essa mudança resulta em elétrons muito mais rápidos. A razão é que a luz pode se comportar não apenas como ondas contínuas, mas também como feixes discretos de energia chamados de fótons. Um fóton azul, por exemplo, contém mais energia do que um fóton vermelho. Assim, o fóton azul age essencialmente como uma "bola de bilhar" com mais energia, desta forma transmitindo maior movimento a um elétron. Esta interpretação corpuscular da luz também explica por que a maior intensidade aumenta o número de elétrons ejetados - com mais fótons colidindo no metal, mais elétrons têm probabilidade de serem atingidos.

Aumentar a intensidade de radiação que provoca o efeito fotoelétrico não aumenta a velocidade dos fotoelétrons, mas aumenta o número de fotoelétrons. Para se aumentar a velocidade dos fotoelétrons, é necessário excitar a placa com radiações de frequências maiores e, portanto, energias mais elevadas.[1]

Equações

Analisando o efeito fotoelétrico quantitativamente usando o método de Einstein, as seguintes equações equivalentes são usadas:

Energia do fóton = Energia necessária para remover um elétron + Energia cinética do elétron emitido

Mais detalhes em: Energia do fóton

Algebricamente:

Onde:

  • h é a constante de Planck,
  • f é a frequência do foton incidente,
  • é a função trabalho, ou energia mínima exigida para remover um elétron de sua ligação atômica,
  • é a energia cinética máxima dos elétrons expelidos,
  • f0 é a frequência mínima para o efeito fotoelétrico ocorrer,
  • m é a massa de repouso do elétron expelido, e
  • vm é a velocidade dos elétrons expelidos.

Notas:

Se a energia do fóton (hf) não é maior que a função trabalho (), nenhum elétron será emitido. A função trabalho é ocasionalmente designada por .
Em física do estado sólido costuma-se usar a energia de Fermi e não a energia de nível de vácuo como referencial nesta equação, o que faz com que a mesma adquira uma forma um pouco diferente.
Note-se ainda que ao aumentar a intensidade da radiação incidente não vai causar uma maior energia cinética dos elétrons (ou electrões) ejectados, mas sim um maior número de partículas deste tipo removidas por unidade de tempo.