Bioinformática

Mapa do cromossomo X humano (a partir do site NCBI). O mapeamento do genoma humano é uma das maiores conquistas da bioinformática.

Bioinformática é um campo interdisciplinar que corresponde à aplicação das técnicas da informática, no sentido de análise da informação, nas áreas de estudo da biologia. Como um campo interdisciplinar da ciência, a bioinformática combina a biologia, ciência da computação, estatística, matemática e engenharia para analisar e interpretar e processar dados biológicos.

A bioinformática vem sendo utilizada para análises in silico de questões biológicas utilizando técnicas de matemática e estatística.

Alguns especialistas[1][2] brasileiros da área acreditam que a bioinformática, como se entende tradicionalmente no meio acadêmico e não pela análise da palavra, é circunscrita à biologia molecular, às vezes ainda mais especificamente restrita à Genômica.[3] Outros acadêmicos, por outro lado, advogam a noção mais abrangente[4] do termo para algo na direção da definição envolvendo informação biológica de modo geral.

Buscando tratar os dados, é necessário desenvolver programas para, por exemplo: identificar genes, prever a configuração tridimensional de proteínas, identificar inibidores de enzimas, organizar e relacionar informação biológica, simular células, agrupar proteínas homólogas, montar árvores filogenéticas, comparar múltiplas comunidades microbianas por construção de bibliotecas metagenômicas e analisar experimentos de expressão gênica, entre outras inúmeras aplicações. De uma maneira menos formal, a bioinformática também tenta entender os princípios organizacionais de sequências de ácidos nucleicos e proteínas.

Uma das maiores conquistas da bioinformática foi o mapeamento completo do genoma humano.

A bioinformática tornou-se uma parte muito importante de muitas áreas da biologia molecular. Em biologia molecular experimental, técnicas de bioinformática, tais como imagem e processamento de sinais, permitiram a extração de resultados úteis a partir de grandes quantidades de dados brutos. No campo da genética e genômica, ela auxilia no sequenciamento e anotações de genomas e suas mutações observadas. Ela também desempenha um papel importante na análise da expressão e regulação de genes e proteínas.

As ferramentas de bioinformática auxiliam na comparação de dados genéticos e genômicos e, mais geralmente, na compreensão dos aspectos evolutivos da biologia ao nível molecular. A um nível mais integrativo, ela ajuda a analisar e catalogar as vias biológicas e redes, que são uma parte importante da biologia sistêmica. Em biologia estrutural, a bioinformática auxilia na simulação e modelagem de DNA, RNA e proteínas, bem como interações biomoleculares.

História

O termo bioinformática foi originalmente usado pelos Paulien Hogeweg e Ben Hesper no começo dos anos 1970 para definir o estudo de processos informacionais nos sistemas bióticos,[5][6] sendo ela uma ciência interdisciplinar, envolvendo matemática, tecnologia computacional e biologia molecular.[7]

Três fatores importantes facilitaram a emergência da bioinformática:

  • primeiramente, uma crescente coleção de sequências de aminoácidos, fornecendo tanto dados quanto uma coleção de problemas fascinantes que não poderiam ser resolvidos sem a capacidade de processamento dos computadores;
  • a ideia que se tornava central na biologia molecular de que as macromoléculas carregavam informações, fornecendo uma importante ligação conceitual entre a biologia molecular e a ciência da computação, muito embora a relevância desta teoria tenha sido questionada;
  • o início da acessibilidade para biólogos a computadores após a segunda guerra mundial.[7]

Podemos desenhar a árvore da história da bioinformática começando em 1951 com Fred Sanger sequenciando o aminoácido da insulina,[8] dois anos depois, em 1953, James D. Watson e Francis Crick descrevem a estrutura em dupla hélice do DNA,[9] Francis Crick novamente contribui com o Dogma Central da Biologia Molecular, onde ele ilustra os mecanismos de transmissão e expressão da hereditariedade e propõe que o DNA é transcrito em RNA mensageiro e que este é traduzido em proteína, elemento que por fim efetua a ação celular. Francis já compartilhava estas informações em 1956, porém somente em 1970 este conhecimento é compilado e distribuído oficialmente.[10] Em 1961, Marshall W. Nirenberg e Heinrich J. Matthaei realizam o experimento de Nirenberg e Matthaei, onde se decifrou o código genético usando homopolímeros de ácidos nucleicos para traduzir aminoácidos específicos.[11] Paul Berg juntamente com Robert H. Symons e David A. Jackson realizaram a primeira recombinação de uma molécula de DNA em 1972.[12] Em 1973, um ano após o feito de Paul Berg, Stanley N. Cohen, Annie C. Y. Chang, Herbert W. Boyer, e Robert B. Helling realizam a primeira recombinação em um organismo, uma Escherichia coli que teve seu DNA recombinado in vitro.[13]

Em 1977, F. Sanger, S. Nicklen e A. R. Coulson mapearam o vírus ϕX174, que se torna então o primeiro genoma completamente mapeado.[14] Emerge então um consenso de que era necessário um banco internacional de ácidos nucleicos, e em 1979, em um encontro realizado pela National Science Foundation na Universidade Rockefeller, é emitida uma chamada para a criação dessa base de dados. Nos dois anos seguintes, foram realizadas uma série de oficinas para definir o projeto que culminou em 1982 com o início oficial do GenBank.[15]

No ano de 1990, o National Institutes of Health (NIH) e o Department of Energy (DOE) se juntam a parceiros de todo o globo para iniciar o Projeto Genoma Humano, (HGP, do inglês Human Genome Project).[16] Em 1995, ocorre o mapeamento da primeira bactéria, a Haemophilus influenzae Rd, com todos os seus 1.830.137 bases de pares de nucleotídeos sendo demonstrados no trabalho conjunto de diversos pesquisadores.[17] Com a ajuda internacional e o rápido avanço tecnológico, o HGP anuncia em 2003, dois anos antes do previsto, o mapeamento completo do genoma humano.[16]